Edge-disjoint spanners in Cartesian products of graphs
نویسندگان
چکیده
A spanning subgraph S= (V ,E′) of a connected graph G= (V ,E) is an (x+ c)-spanner if for any pair of vertices u and v, dS(u, v) dG(u, v) + c where dG and dS are the usual distance functions in G and S, respectively. The parameter c is called the delay of the spanner. We study edge-disjoint spanners in graphs, focusing on graphs formed as Cartesian products. Our approach is to construct sets of edge-disjoint spanners in a product based on sets of edge-disjoint spanners and colorings of the component graphs. We present several results on general products and then narrow our focus to hypercubes. © 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Edge-disjoint spanners of complete bipartite graphs
A spanning subgraph S=(V; E′) of a connected simple graph G=(V; E) is an (x+c)-spanner if for any pair of vertices u and v; dS(u; v)6dG(u; v)+c where dG and dS are the usual distance functions in graphs G and S, respectively. The parameter c is called the delay of the spanner. We investigate the number of edge-disjoint spanners of a given delay that can exist in complete bipartite graphs. We de...
متن کاملEdge-disjoint spanners in tori
A spanning subgraph S = (V , E ) of a connected graph G = (V , E) is an (x + c)-spanner if for any pair of vertices u and v, dS(u, v) ≤ dG(u, v) + c where dG and dS are the usual distance functions in G and S, respectively. The parameter c is called the delay of the spanner. We study edge-disjoint spanners in graphs in multi-dimensional tori. We show that each two-dimensional torus has a set of...
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملOn Cartesian Products of Orthogonal Double Covers
Let H be a graph on n vertices and G a collection of n subgraphs of H, one for each vertex, where G is an orthogonal double cover (ODC) of H if every edge of H occurs in exactly two members of G and any two members share an edge whenever the corresponding vertices are adjacent in H and share no edges whenever the corresponding vertices are nonadjacent in H. In this paper, we are concerned with ...
متن کاملDistinct edge geodetic decomposition in graphs
Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 296 شماره
صفحات -
تاریخ انتشار 2005